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ABSTRACT 

This is the first of two papers in which we deal with 

the problems of a large gauge hierarchy and decoupling in 

theories with spontaneously broken symmetry. They are 

relevant to the current developments of grand unification, in 

which several vacuum expectation values of scalar fields are 

introduced, with one of them (V) much larger than all the 

others. We shall shcw to all orders in the loop expansion 

that: (1) Once we make a proper identification of the light 

particles and of the heavy particles at the tree level, then 

such a division will be maintained order by order in the loop 

expansion without the necessity of fine tuning. The 

correction to the light masses in each order is only 

logarithmic in V. (2) To O(1) accuracy, there is a local 

renormalizable effective Lagrangian, composed of light fields 

only, which can be used to reproduce all the one light 

particle irreducible Green's functions for external 

momenta << V. 
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In this paper, we shall give a pedagogical discussion 

of hew the general results are obtained. We shall use a 

gauge model with O(3) symmetry to describe, in particular, 

haul we organize the perturbation series to incorporate the 

renormalized vacuum expectation values as a part of the input 

parameters. The one loop calculation is then performed, 

including a complete treatment of the scalar sector, to 

illustrate our claim and to extract out all the effective 

parameters as functions of the original parameters. A 

complete, all order treatment will be presented in the second 

paper. Finally, a set of renormalization group equations are 

written darn, wherein one stays in the 1~ energy region to 

corrrelate these two sets of parameters. A leading 

logarithmic sum for the gauge coupling is performed to 

demonstrate the calculational and conceptual simplicity. 



I. Introduction 

GENEPALITY ,-_ 

There are two problems in gauge theories with spontaneously 

broken symmetry to which definitive solutions are lacking 

thus far. One has to do with the validity of the decoupling 
1 

theorem and the other is the gauge hierarchy problem.2 We 

shall explain these problems and then give solutions, with 

emphasis on the first problem. 

First, let us state the decoupling theorem? Consider 

a theory in which-there are both light mass and heavy mass 

fields. We shall require that both the full theory and the 

reduced or light theory (which is obtained after the heavy 

fields are deleted) are renormalizable. The decoupling 

theorem applies to processes with only light external particles 

in the limit that the heavy mass M becomes very large relative 

to both the light mass m and the external momenta lGi\. 

If, in this limit, light particle physical quantities calculated 

to O(l) from the full theory can also be calculated from 

the light theory after suitable redefinition of masses, 

couplings and wave function renormalization of the light 

theory have been made, then decoupling is said to occur. 

The utility of the decoupling theorem is that physical 

quantities can often be calculated more simply from the light 

theory than from the full theory. The validity of this 

theorem has already been established in many theories without 

spontaneous symmetry breaking, for example QED and QCD.1 
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The gist of the argument in these th~cories is that, to the 

order of accuracy stated, the contribution of the heavy 

particles is limited to only the ultraviolet region in the 

integrals that arise and that the heavy particles 

matter only for diaqrams or subdiagrams with at most four 

light legs. That is so because the heavy particle mass M 

always appears in the propagator 2 -1 (p2+M ) . Only for divergent 

integrals do the M dependent effects become manifest. 

However, these finite M dependent effects are absorbable 

by the usual renormalization constants and thus the theorem 

follows. 

In theories with spontaneously broken symmetry, the 

situation is different. In particular, there are two new 

aspects which merit discussion: 

(1) How does M become big? 

The masses of the particles are generally proportional 

tom gv, where g is a generic coupling constant and v is 

a generic vacuum expectation value of a scalar field. We 

can make certain masses big by making either the appropriate 

g or v large. In the former case, we are dealing with 

a strong coupling theory. An example of this is the 

SU(2) x U(1) electroweak model with a very heavy Higgs 

particle (mass %I. In the limit % + - the resulting theory 

is apparently non-renormalizable and the decoupling theorem 

is not valid. This was pointed out by Veltman and others and 
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was recently formulated in the language of an effective Lagranyian 

by Appelquist and Bernard.4 We shall not dwell on this case 

any further. 

What we shall be concerned with is the case where one 

or more vacuum expectation value becomes much larger than 

the other vacuum expectation values. We shall denote the 

large vactuum expectation value by V. In so doing, we shall 

find that some of the scalars, vectors and fermions become 

very massive simultaneously. This is the limit taken in 

theories of then grand unification cateyory.5 We shall show 

that the decoupling theorem applies here. 

(2) Where do the heavy mass effects contribute in an 

integration? 

A distinctive feature for a theory with spontaneously 

broken symmetry is that some of the coupling terms are 

proportional to M. Thus, one naturally gets contributions 

to light field processes like the convergent integral 

d4k k2:,2 ' 
(k2+m2J2 ' 

(I.11 

in which m is a light mass. Because of the M dependence in 

the vertices of theories with spontaneous symmetry breakdown, 

this integral gives a EM (M/m) + constantlfactor which is not 

suppressed by a l/~~ factor , as would be the case in theories 

without spontaneous symmetry breakdown. The dominant region 

of the integrand here does not come entirely from the ultraviolet. 
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It comes both from the ultravi.olet (k%M) and infrared (k<<M) 

regions. To control such regions is an added complication in 

an analysis. Ultimately, we shall see that even though the 

entire region contributes, the renormalization group technique 

can still be used to sum up the heavy mass effects. 

Now we turn to the gauge hierarchy issue. As is well- 

known in grand unification schemes, a big local gauge 

symmetry G is initially assumed in a Lagrangian, which is 

then badly broken by a huge vacuum expectation value V 

down to a reduced local gauge symmetry G'. This is further 

broken by another vacuum expectation value v (<< VI into 

the final symmetry, presumably SU(3)color 8 (SU(2) @ U(l))electroweal 

There are two questions which should be posed along the way. 

Onthe one hand one may ponder how such drastically different 

scales can be naturally induced in a theory. To this, we 

have no answer, and perhaps there'is really no answer without furthe: 

dynamical input. A more serious and pragmatic problem concerns the 

consistency of dividing particles into light and heavy species. 

The point is that if we proceed to calculate radiative corrections 

in a loop expansion, then light and heavy particles get mixed. II ow 

to separate 'heavy' and 'light' naturally is a crucial aspect of 

the gauge hierarchy problem. 

What we shall show is that while there is at all stages 

mixing between light and heavy particles in the loop expansion, 

we shall see that once we make an assignment at the tree 
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level so that some of the particles are light with mass m tree' 
then at any loop order the mass of the light particles is 

given by 

m=m 
tree (’ + 1 

AiUn FJni 1 
i:-loop 

(1.2) 

where Ai is a function of the coupling constants, ni is 

some integer, and n is a subtraction constant. This is 

accomplished by way of our organization of the perturbation 

series. Disregarding the technical details for the moment, 

it is then clear that we do not need any fine tuning to 

maintain a heavy-,light separation in the spectrun.6 it 

should also be evident to the reader that this is a necessary 

and essential step in order to push through the proof of the 

decoupling theorem. Had it not been possible to make a 

clean division of particles into light and heavy sectors, 

the meaning of the decoupling theorem would have been very 

obscure. 

scope of our Work 

To be concrete, we consider an O(3) gauge model where 

there are two scalar triplets. After the Higgs mechanism is 

invoked twice, we shall find that there exist in the light 

sector a vector boson together with its would-be Goldstone 

boson partner and associated Fadeev-Popov ghost and a physical 

Higgs scalar. 

Of particular interest to us in the full theory are 

the renormalized Green's functions P (n) , which have n light 

external legs and are one light particle irreducible 
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(by one light particle irreducible we mean that rCn) may 

have diagrams which are one heavy particle reducible.) ' 

Besides being pertinent to ,the physics under investigation, 

these Green's functions will properly and automatically take 

into account mixing between heavy and light particles. 

The renormalized Green's functions in the light theory 

r*(n) are of course just one particle irreducible. They 

can be constructed according to the rules dictated by the 

light Lagrangian, which is obtained by striking out all 

terms involving heavy fields in the full Lagrangian and 

by redefining the light masses and coupling constants and 

performing finite wave function renormalizations. 

The results we have obtained to all orders in the loop 

expansion are as follows: 

(1) Decoupling theorem: We have succeeded in showing that 

for the n light particle Green's function,if the external 

momenta satisfy [&[ << M, 

rtn) (g;m,M,v; "pi) 

= z n/2r*(n) (g*; m*,Fli $, I) + S(l/& (1.3) 

in which g is a generic coupling constant in the full theory 

and !.I(<< M) is a subtraction scale. For definiteness one 

may use the minimal subtraction scheme to renormalize these 

Green's functions. g* and m* are effective parameters in the 

light theory and Z is a generic finite wave function 

renormalization constant. 
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(2) Natural separation of the light particles from the 

heavy particles (gauge hierarchy): To all orders, we can 

show that 

n. 
m*=m(l+ 1 hi(g) (Ln 1) =) 

i=loon 

In words, it says that up to logarithmic correction, light 

particles are naturally light in the effective light theory. 

There is no need for fine tuning to arriveat::this conclusion. 

Throughout our approach, we stay in the low energy 

region. All the 1~ M/y effects are just radiative corrections 

and are contained in the effective parameters. There are 

natural renormalization group equations which can be deployed 

to sum up such contributions. In our approach to incorporate 

correctly the heavy fieldsnwe don not have to deal with either 

high energy boundary conditions, or thresholds in the 

B-functions of the renormalization group.8 

Let us briefly sketch the basic technique used to 

obtain these results. Due to the conciseness of a Lagrangian 

description we can construct the integrand for any diagram. 

Conversely, if we know how to construct any arbitrary integrand, 

we know the Lagrangian. Hence it is evident that the proof 

of a decoupling theorem rests on how one can make a systematic 

and correct approximation on integrands of the full theory 

so that the resulting integrals are accurate to the order in 

heavy mass we set out to achieve. When these resulting 
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approximate integrands are precisely reproducible by the 

effective Lagrangian we have the theorem. 

Now, this combinatoric problem is in fact 

solved by an algebraic identity, which rearranges 

the integrands in the way we have just described. In 

order to assure that we know how to make the correct 

approximation, al.1 we need is some power counting rules, 

which have been developed by us. 

There are of necessity some technical issues along the 

way. Thus, we have divided the material into two articles, 

of which this is the first. The more general, all 

order aspects will be given in a sequel.Y Here, we shall 

be pedagogical and shall substantiate our approach with 

explicit one loop calculations. We hope that the reader 

will see the logic behind our manipulation, as guided by 

concrete examples. In this connection, another contribution 

of this article is that we shall give a complete and detailed 

account of the scalar sector , which is where most of the 

complication lies for a theory with spontaneously broken 

symmetry. 

The plan of this paper is as follows: in the next 

section, we shall write down the Lagrangian for the full 

theory and display the spectrum after symmetry breaking. 

The large mass limit will be taken at the tree level to 

deduce the operator structure of the effective light 
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Lagrangian. In Section III, we shall describe how we shall 

develop the perturbation series. Here, we shall state our 

approach ,to the relationship between the mass parameters and 

the vacuum expectation values. The general approach to 

extract large mass ef.:ects and how decoupling is accomplished 

will be outlined in Section IV. This is followed by Section V, 

where explicit calculations at the one loop order are given. 

An appendix has been prepared to record contributions from various 

diagrams. We shall digress momentarily in Section VI, to focus 

on the decoupling aspects and the gauge hierarchy issue based 

on these one loop results. Furthermore armed with these one 

loop results, we shall use the renormalization group technique in 

Section VII to improve them in the spirit of performing a 

leading logarithmic sum. It should be noted that while the 

renormalization group equations governing the effective parameters 

can be trivially derived, our approach is nevertheless novel. 

A short conclusion to recapitulate some of the results will make 

up Section VIII. 



-lO- 

II. Model Lagrangian 

The model Lagrangian we shall consider possesses an 

O(3) local gauge symmetry. The gauge fields are AF=l'2'3 z zn. 

To induce a gauge hierarchy, we introduce two real scalar 

triplets @l,a (= zl) and +2,a (= J2) with a=1,2,3. The 

classical Lagrangian is 

$ = - + (ap it,-avXp-e X x ity) 
2 

!J 

-- ,’ (all ;b,-e Au x $,I2 - + cap z2-e Xv x ;6,j2 

1 2+2 1 2+2 
- T ml @1 - y m2 +2 - a 1 l A G$;)2 

- $ x2 ($;,2 - ; x3 q i$; - L 2 14 (T1-G2)2 (11.1) 

where the metric is (-l,l,l,l). 

There are two attitudes one can take regarding the parameters 

in systems where spontaneous symmetry breakdown occurs, such 

as this. Gildener and other people2require that Xl and X2 

are positive, 2 2 
"1 and m 2 are negative and that 

(11.2) 

The vacuum is then determined by locating the absolute minimum 

of the potential. When the above conditions on Al, X2, X 2 
3' ml and m2 2 

are satisfied and when X4>0, the absolute minimum occurs for both 

scalar triplets having non-zero vacuum expectation values and for the 

triplets having non-zero vacuum expectation values and for the 

relative orientation of the vacuum expectation values of the 

scalar triplets being orthogonal to each other. One then writes 
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J1 = (vl + u, 1r2, Tr3) (II.31 

and 

;b, = QJ1l v2 + $I tJ,) (II.41 

v1 "2 The local gauge symmetry is spontaneously broken 0(3)---t O(2) -----+ 

no local gauge symmetry. In this approach, vl S V and v2 (CC vll 

are functions of e, the X's, and the m's. To achieve a large 

gauge hierarchy vl >> v2, one has to fine tune the A's, 

and the m's. For example, at the tree level 

2 2 
2 X3m2-X2ml v1 = 2 (11.5) 

'lX2-13 
2 2 

2 h3 ml-Xlm2 v2 = 2 (11.6) 
hlX2rA3 

and for v 2 2 
1 >' v 2 we must fine tune parameters so that 

2 
X3ml 

2 - X1 m2 s 0 . (11.7) 

This is one aspect of the gauge hierarchy problem. 

Another way to look at the parameters is that the symmetric 

vacuum is assumed to be unstable. The vacuum expectation values 

v 1 and v 2 are taken to be free parameters which one puts in by 

hand and which satisfy vl>>v2. Now rnt 2 and m2 are determined, as 

functions of the, A'S, v's and e by the minimum conditions. 

Furthermore to ensure we are at the absolute minimum of the 

potential, at least in the tree approximation, we require that 

Xl8 X2 and X4 are positive and that 
2 

AIVl max 1-q , .- - , 2 (11.8) 

v2 
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This is the approach we shall follow. This completely skirts 

the question, which is perhaps philosophical, as to whether one 

can naturally induce a very large gauge hierarchy. The issue we 

address is whether this approach is self-consistent in the 

context of perturbation theory. At the tree lt-vel, the 

minimum conditions are 
2 2 2 

-m 1 = x1 v1 + x3 v2 (11.9) 

2 
-m 2 = x2 v; + A3 v", (11.10) 

When we add radi‘ative corrections, the right hand sides of 

Eqs. (11.9) and (11.10) will have extra terms. This will be 

discussed further in the next few sections. 

Now, it is easy to display the spectrum in this model. 

We heave 

(1) 2 2 
mAl = (e v,) , 

2 
mA2 

= (e v,) 2 , 

2 
mA3 = e2 (vf + v;). 

(11.11) 

(11.12) 

(II.13) 

(2) We define 

5 5 (v1n2 (11.14) 

and 

n z 
(V2"2 + VIJll)/ v1 FLy 

It can readily be seen that 5 is the Goldstone partner to A3. 

In the 't Hooft-Feynman gauge, which will be used throughout 
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for olur calculation, 

m2, = rni 
3 

(II.161 

whereas 

2 
mn = A,(v2, + vi, (II.171 

(3) n3 is the Goldstone partner for A2 and II, 
3 is that for 

Al ' where theirmasses are respectively 

(II.181 
2 

and 

mi3 Al zz m2 (11.19) 

(4) u and L$ mix. The mass eigenstates are 

H = c co9 0- I#I sin@, 

h = CI sin 8+ $I ~0.~8, 

with 
L 

x3v2 sine 2 - (---- 
X,(X,- ; g, 

f 1. 

AIVl 
2 

Xl 
(3 3, 

(II.~q 

(II.21) 

(11.22) 

where higher order terms in v2/v1 have been dropped. Their 

masses are, respectively, 

4 = xp; + h2v; + q&3~-x,v;)2 + 4(X3V1V2)2 

2 x2 3 2 
= 2 (XIV1 + r v2) (II.23) 
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< = ;ilv: + x2v; - W4(h3 vlv2F 

z 2 (X2-A:/hl) v; (11.24) 

We can identify Al, @3, and h as the light fields. 

For matrix elements at low momenta with only light field 

external lines, we can show that to O(l) at the tree level they 

are reproduced by the following light effective Lagrangian 

le flight = r r 1 (apAl,-av Al,,j2 

- $ I(au - i e* AlP)Q12 

1 -- 
2 

m*2 I,$12 - ; A* (lQ12)2 (11.2'5) 

where 

@=v*+h+iQ3 (11.26) 

%ee = v2 
(11.27) 

(11.28) 

XEree = x2 -. h;& (11.29) 

and from which we can obtain 

(4 tree) 
2 

= 2h~ree(V:xee)2= -21mLree12 

and 
* (m 
Al tree 

j2 = teEreel (viree) 2 

(11.30) 

(II.311 

That the effective Lagrangian is correct at the tree level 

is illustrared well by the following example. For h-h 
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scattering in the full theory, we have the four diagrams of 

Fig. 1, which give 

-+I = 6X2 
2 2 

- 4x3 v1 ( 1 + 1 1 -- 
(Pl+P2)2+r (p1+p3)7q 

+ 
(pl+p4j2+ni 

) 

2 6 (X2 - A&) (11.32) 

for % >> mh and Isil (i =1,2,3,4). We readily identify 

hiree = A2 - ";/Al. This example also serves to explain why 

we must consider one light particle irreducible Green's functions. 
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111. Perturbation Expansion - 

In this section, we shall discuss how the perturbation 

series is organized. There are two issues here that merit 

detailed discussion. They are (1) how we work about the 

'_ruc minimum of the potential which changes order by order 

and how that is incorporated into the perturbation series 

and (2) how by including all one light particle irreducible 

graphs we automatically take care of the mixing of the light 

and heavy fields that occurs in each order of the perturbation 

series. 

First let us develop our notation and introduce some 

preliminary details. We shall work in the 't Hooft-Feynman 

gauge throughout. Then, supplementing the Lagrangian of 

Eq. (II.1) is the following gauge fixing term and its 

associated ghost term 

L gauge = - & (aun~-ay q312- k (~&-b "2r3)2 

- & (a&-u (a2~2-i31~l))2 + Cl(a2-a alev2)c1 

+c2 (a2-a.a2evl)c2+ C3 (a2-a(a2evl+alev2))C3 

-e(G x ((au-P) + Pau))-Z 

- 
+ae (-alCIWl + 9C2n2Cl + a2E31T3C1 + q-qb1c2 

-a2 c2clc2 + qqJ3C2 - Ej(a:u + al$)c3), 

(111.1) 
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where cx tree = 1, (a,) tree = ev2, and (a21tree = evl. The z's 
-+ 

and E's are the ghost and the anti-ghost fields of the corresponding 

ZlS. There is a discrete symmetry in the total Lagrangian, 

which helps us discuss the mixing problem and determine which 

Feynman diagrams are allowable. We assign the following indices 

0: for u and @ (111.2) 

1: for Al, $3 and Cl (111.3) 

2: for A2, n3 and C2 (111.4) 

3: for A3, n2, $, and C3 (111.5) 

It can easily be verified that the indices 1,2,3 (and 0) are 

cyclically conserved. Details will be given in the companion 

9 paper. In particular, this observation tells us that u will 

mix only with $I and that 712 will mix~only with $1, to all orders. 

We shall now address issue (1) above of how the vacuum 

conditions are incorporated into the perturbation series. 

Let us consider the o,$ sector of the theory alone and 

let us examine the relevant linear and quadratic terms from 

the Lagrangian of Eq. (11.1). These are 
122 122 

d(a,@) 
z-Tmhh -?mHH 

+ H(-DlvlcO~e + D2v2 Sin@) 

+ h(-Dlvlsin8 - D2v2 case) 

' H2 -- 
2 (DL cOS2 8+ D2 sin281 

; h2 (Dl sin2 e+ D2 00S2e) -- 

(111.6) -h H sin8 cos6 CDL-D21 
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where 
Dl= 2 2 2 

ml + AIVl + h3V2 (111.7) 

2 D2 =m 2 + A 2 v2 2 + A3V1 1 (111.8) 

The quantities mh and mR are the tree values of the masses 

of the h and H fields respectively, which are given by 

Eqs. (11.23) and (11.24). The angle 6 is the rotation angle 

obtained at the tree level and is given by 

We shall take as our free Lagrangian 

d free = - + aPhaUh - i m$~' - ?jauHa"H 

Eq. (11.221. 

-$GH2 

-- ,' t8PXv-avitu)2 - $ni A:, 
1 

- $rni A:,, - irnz A$- $(aPzu)2 
2. 3 

- $ aPg aPc- +rnt 
3 

E2 - * au17aun- +nlq2 

12 2 - + aPm3aPr3 - ?rnA r3 - J= 2 a,J13au+, 
12 2 

2 - zmAl$3 

+ Fl (a2-m2 )C, + F(a"Am2 )c2 
Al A2 

+ c3(a2-m2 
A3 

)C, 

(111.9) 
where the first line of Zfree is the piece relevant for the 

(a,$) system. All the quantities indfree are renormalized ones. 

The renormalized values of vl and v2 are input parameters. We do 

not expand them in loops. - We treat the rest of the Lagrsngian as a 

perturbation. The terms Dl and D2 are determined by the 

requirement that we are working at the exact minimum which 

corresponds to the conditions (h) = (H) = 0 and these in 

turn give us 

-Dlvl cosa + DZv2 sine + Rl = 0 (111.10) 

and 

-DlvlsinB - D2v2cosa + R2 = 0 (IIIS.11) 
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where Rl and R2 are, respectively, radiative corrections to H and 

h tadpoles. Of course, Eqs. (111.10) and (111.11) can also be used 

to determine ml and m2, but that is unnecessary, because they never 

appear in any calculation as we can easily show. It should be noted 

Dl and D2 are zero in the tree approximation only and receive 

contributions starting at the first order in the perturbation 

expansion. Therefore it is consistent in our perturbation theory 

to treat the quadratic terms of U! ccf,+) 
(excluding of course G2 

and m$2) as interaction terms. Having now determined Dl and D2 

we can use them for calculating physical quantities, such as mass 

shifts. An example is 

A4 = Dl sin2B + D 2 cos2e - Ar2h(p=O) 

xz El ‘(" case sin20 - -2~ sin8 cos24) 
1 "2 

+ R2 +- sin34 + & cos3e) - Ar2h(p=O) 

l 
2 (III.12) 

where Ar2h (p=O) is the one light particle irreducible radiative 

correction to the two point h-function at zero momentum. 

Let us now address issue (2) above of how the light-heavy 

mixing is taken care of. It is clear that h and H will mix 

in every order of a calculation. Obviously it would be a 

nuisance to have to re-diagonalise to find the masses and mass 

eigenstates after each order to yield new propagators and vertices 

to proceed to calculate the next order. However, as stated above, 

if we deal with one light particle irreducible graphs then this 

mixing problem is automatically taken care of to S(l) . Actually, 

one is assured that for any physical process, as far as internal 

. 
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lines are concerned, mixing has no consequence, because all 

states are sununed over. Therefore we can work with any 

representation of the fields. However, to construct physical 

matrix elements which pertain to the physical particles 

(external lines) under consideration, we need to project 

out the proper combinations. This is where mixing has to be 

properly treated. We shall work with the h-H basis and 

identify the physical light Higgs as the lighter eigenstate 

of the mass matrix. 

m2 = 
4 + CHH %hH 

‘hH lqf + z hh i 

(111.13) 

where the X's are the self energy operators evaluated at 

zero momentum. we shall show that Zhh is of order ~7; and 

'hH is of order vlv2, at least to one loop order (see Sections 

V and VI). The all order result will be shown in the sequel. 

Let the orthogonal matrix which diagonalizes T2 be 
cos 6 

A= (111.14) 
-sin S 

Then 

sins = - 'hH 
4 + CHH 

+. Ly(~--- l) 
vi 

and the light eigenstate is 
htrue = h cosS + H sin8 = h - ~=hH H+cr(+ 

G+%H v1 

(111.15) 

(111.16) 
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which symbolically gives the amputated Green's function 

(htrue > = Ql . ..) 1 . . . amp - 'hH 2 (H...) 
=mp %%H =w 

+ 8 (+ (111.17) 

v1 

But this combination of terms is precisely what we mean by 

one light particle irreducible Green's functions. Furthermore, 

it is not hard to see that 

tHtrue htrue )= (HH)+ O(-+) 
V1 

(111.18) 

which affirms that we can just classifythe heavy internal lines 

by H. Thus, as claimed, mixing is automatically taken care 

of by the use of one light particle irreducible Green's 

i-Llnctions * 

The theory is iteratively renormalized by minimal 

subtraction+' This is effected by resealing 

All = (Z,) u2 (ZJ r 

c' = ("2)1'2 (& 

$1 = (ZQ 1'2 ($,) r 

$2 = (z$;) 1'2 Q, 

"l = zvl (vl) r 

v2 = zv2 (v2)r 

-l/2 a1 = ZA -l/2 Z$ er(v2)r 
-l/2 -2/2 

=2 = 'A '$1 er(Vl)r 

e = Ze er 

(111.19) 

(111.20) 

(111.21) 

(111.22) 

(111.23) 

(111.24) 

(111.25) 

(.III~.26) 

(111.27) 
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hi = zx, (Xijr i = 1,2,3,4 
1 I 

(111.28) 

and 

a=za A r 
(111.29) 

If we recall the calculational procedure, we see that 

since the mass parameters m2 1 and rnz do not appear in any 

Green's function, their renormalization is of no interest 

to us. 

For completeness, we remark that the light theory is also 

quantized in the 't' Hooft-Feynman gauge (airee=l). 

&light = 1 
w-v -7 

2cl 
(aUAy-CX*a*$3)2 

+ El(a2-a*e*v*a*) Cl - 
* *’ * _ 

clea c1 h 5 (111.30) 

The free Lagrangian is 

;elight = 
free - ~(a~Al,-avA1~)2-~(a~A~)2 

1 *2 *2 
(AN) 

2 --e 2 V - $ au h au h 

- + (2 A* V*2) h2 - i all @, 3' $3 

1 *2 "2 --e 2 V I)", + Cl (a2-e*2 Vet) Cl (111.31) 

where all the quantities are renormalized. The rest is treated 

as a perturbation in the spirit outlined for the full theory. 

Renormalization is performed through minimal subtraction, 

which is in turn carried out iteratively by resealing 
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A1u 
= (zll) 1’2 (Alu) r 

c1 
= (,flY2 (C1lr 

h = (Z;;)1'2 (h) r 

ljJ, = (zy2 NJ,) r 

* 
v = z, * (v*lr 

* * -l/2 * 
a = (z* p2. (Z,,) 

A1 

er (v*jr 

'1'2 (e*), 
* 

e = (z; I- 
1 

(111.32) 

(111.33) 

(111.34) 

(111.35, 

(111.36) 

(III.371 

I 
(111.38) 

x* = z; (A* (111.?9) 

* ** 
a = z 

A1 C(R 
(111.40) 

and 
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IV. Outline of General Approach -- - - 

In this paper we shall limit ourselves to a pedagogical 

description of our approach in obtaining the results 

given by Eqs. (I.3 and 1.4). A thorough treatment and other 

ramifications will be given in a separate publication.9 

We shall follm two steps in giving a proof. First, we 

shall establish the existence of a local renormalizable 

effective field theory for light processes at lckl energy. 

This first step is by construction and it is, in principle, 

possible to work out the combinatorical problem of the 

induced local vertices and identify the effective Lagrangian. 

However this task is made rrmch easier by utilizing the next 

step, which consists of deriving the Becchi-Rouet-Stora (BRS) 

identities11 satisfied by the one particle irreducible 

generating functional of the effective theory. This then 

uniquely determines the structure of the effective light 

theory. Let us describe these two steps: 

(I.) Existence of a Local Renormalizable Effective Field 

Theory: The aim here is to show that given any diagram we 

have a procedure to shrink the diagram, or parts of it, 

systematically into points to exhaust all the 8(l) 

contributions. Furthermore, we shall establish a set of 

power counting rules which shoYls that there are no more than 

four bosons entering or leaving these induced vertices. The 

existence of a local effective Lagrangian is then assured. 
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We shall in fact construct these vertrices explicitly by 

algebraic rearrangement. An example will now be given to 

introduce and illustrate the general procedure. Consider 

Fig. 2 in which there are two light internal lines and a 

heavy internal line with mass M. The relevant integral for 

it is of the form: 

I = ~2 / d4k 
1 1 1 -___c (IV.1) 

(k+p1)2+m2 (k-p2)2+m2 k2+M2 

The multiplicative factor M2 comes from the heavy-light 

vertices. There are two parts in this diagram which contain 

the heavy line. We denote them as part 1 and part 2. We 

now define a shrinking operator T which short circuits all 

the external momenta entering or leaving the part under 

consideration. Th US 

1 1 -=- 
T1 k2+M2 M2 

(VI.2) 

and 

1 1 1 1 1 
T -= 

2 (k+p )2+m2 (k-p2)2+m2 k2+M2 (k2+m2)2 k- 
1 

(VI;3) 

T is a Taylor operator which localizes a vertex. Next we use 

the follcwing algebraic identity 

1 = (l-T2)(1-T1)+(1-T )T + T 
21 2 

(VI.41 

to split the integral into 
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1=11+1 
(I.1 + I(2) 

(IV.5) 

where 

I' f u-T2)w-yI 

= M2 1 d4k [ 
1 1 

(k+pl)2+m2 (k=p2)2+m2 

- (k2:,&?1 (A - $) (IV.6) 

Note that the original integral has O(1) and D(&%M2) 

contribution coming from the k2 <, M2 region, but because 

of the (l-~-)(1-~,) operation, the power behavior of the 
‘ 

integrand has 

be discarded. 

I 
been 'improved', so the I' is of 9(-- l ) and can 

M2 
The second term of Eq. (IV.5) is 

= M2(1-T2) 1 d4k 
1 1 1 

(k+pl)3+m2 (k-p2)2+m2 M -T 

= f d4k ( 1 
1 1 

(kpl)3+m2 (k-p2)2+m2 (k2+m2)2 
) (IV.7) 

in which we have made two moves: (i) the heavy line has been 

shrunken into a point vertex, which is graphically represented 

in Fig. 3i and can be identified as a part of a vertex in 

the effective light theory and (ii) the (l-~2) operation 

renders the reduced integral finite. This last feature is too 

important not to delve into some more. It is because of the 
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built-in mechanism to auto-renormalize the resulting integral 

that a meaningful large M limit can be taken. This is a 

distinct advantage of our method over the formal functional 

method, which integrates over heavy fields but cannot be used 

judiciously to induce a local theory in the large M limit. 

I 
(1) 

gives O(l) contribution, 

The third term of Eq. (IV.5) is just a part of an 

effective coupling, because 

ZTI 
I(2) 2 . 

= M2 1 d4k 
1 1 ___----- ------- 

(k2+m2)2 (k2+M2) 
(IV.8) 

is just a number ofC+(.& M2) with no external momentum 

dependence. The T 
2 

operation induces a vertex shown in Fig. 

3ii. 

Let us recapitulate the spirit of the procedure employed 

in the above example. Given a one light particle irreducible 

graph with light external legs, we first look for 

(non-trivial) two, three and four light particle sub-graphs, 

which are the potential diagrams that give rise to local 

vertices of the effective theory. We call them partition 

elements. Then, we enumerate all possible ways of reducing 

these sub-graphs into points. Reduction here is accomplished 

by applying appropriate Taylor operators T to produce local 

vertices. In this way, we obtain various reduced diagrams, 

which may be specified by a list of reduced partition 

elements (reduction elements). Some of these diagrams still 

contain partition elements which are not reduced, i.e. they 
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still have heavy particle propagators inside. We may have to 

make these diagrams finite ty applying extra zero momentum 

subtractions upon the non-reduced partition elements, aside 

from the usual minimal subtractions. These 

'over-subtractions' improve the large M behavior of the 

integrands sufficiently to render the integrals vanishing as 

M+-. What are left over are only the 'fully reduced' 

diagrams in which heavy particle propagators are no longer 

present. They have the structure of graphs in the light 

particle theory and only these give contributions of e(l). 

This is the essential idea which is applicable to any general 

diagram. The actual implementation, however, involves rather 

complicated combinatorics and is best handled in the 

formalism of Bogolubov-Parasiuk-Hepp-Zimmermann (BPHZ)12. In 

this paper, we shall simply recallthe results with brief 

explanation. 

Let I be the integrand corresponding to a diagram 
r 

constructed from the full Lagrangian, the renormalized 

integrand according to RPBZ is 

R 
r ="LE F(r) ,!jE" (-to) Ir (IV.91 

0 0 

in which LJ, is a forest consisting of a set of 

non-overlapping renormalization parts d and F is the set of 

all forests. 

We shall use r/(nl, ~2, . . . nml to denote the reduced 

graph corresponding to the set of reduction elements {nl, ~2, 

..a, nm). We claim that Eq. (IV.9) can be rewritten as: 
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Ry = 1 c 
(Tl,T2r...r nrnl U~F(r/Inl,nz,...,nm}) 

ll (-T-f) ", (T 
"i 

n (-to’) )Iy 
(IV.10) 

I 
YEU i=l UiEfo(ri) 0' EUi 

in which only the sum (1 ) corresponding to full 
IlIlr*2r.*srTml 

reductions contribute to o(1). Let us explain the content of 

this forrrmla in words. Ui is a forest of the reduction 

element ni before it is shrunken and F,(Ui)is the collection 

of all such forests. The operation 1 n (-to'), in 
UieFo(qi) e'eUi 

which a' is a renormalization part, merely renormalizes the 

reduction element as is usually done. For a fixed reduced 

graph, we gather together all the partition elements and 

renormalization parts and denote them by y. T is an 

operation such that if a particular y is a renormalization 

part, we apply t. If it is a partition element other than a 

renormalization part, we apply T. The rest of Eq. (IV.ll) 

just says that we sum over all the possible reduced graphs 

and 'renormalize' the integrands as if all the partition 

elements were divergent. The complete derivation of this 

identity and other clarification will be given elsewhere. 

The most important point we wish to register here is 

that the effective vertices are identifiable with the 

reduction elements. In fact the effective couplings are 

eva luated at zero externa 

itly give at the one loop 

the corresponding sub-integrals 

momenta. These we shall explic 

level in the next few sections. 

just 

.l 
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(2) The Exact Form of the Effective Lagrangian: Although 

it is in principle possible to dig deeply into the structure 

of the algebraic identities to identify all the fundamental 

effective vertices, this task is horrendous. On the one 

hand, these vertices have very complicated coefficients as 

functions of the orginal parameters, as we shall exhibit 

even at the one loop level. More importantly, we are 

dealing with a gauge theory and it is necessary to be 

assured that gauge invariance is not violated in taking the 

large v1 limit. It happens that gauge invariance is actually 

a blessing in disguise. We may recall that in proving the 

renormalizability of gauge theories, the BRS identities, 

together with power counting, actually specify all the 

counter terms allodable. We can apply a parallel 

consideration here. We shall start with the RRS identities 

for the one light particle irreducible functional of the full 

theory. Upon setting the heavy particle sources to zero, we 

can show by power counting that the RRS identities go over to 

O(2) BRS identities for the one particle irreducible 

functional of the effective light theory. This then uniquely 

determines the operator structure of the effective 

Lagrangian. In addition, we shall see that the only vacuum 

expectation value which is explicitly left behind and enters 

in the O(2) BRS identities is v2. This should complete our 

proof of decoupling and the stability of the mass hierarchy 

in perturbation ewansion to all orders. This program will 

be carried out in a coqaanion article. 
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V. One Loop Calculation 

We shall determine the effective parameters at the one 

loop level in this and the next sections. It will be ill 

advised for us to show how individual diagrams have been 

evaluated in the way described in the last section, as this 

will make our presentation rather tedious and vexing. Never- 

theless, we have recorded the detailed contributions of various 

diagrams or sets of diagrams in the Appendix. We confine 

ourselves here to pointing out the salient features, whenever 

necessary. 

In the light effective theory, there are three parameters, 

e*, X*, and v*. However, to go from the full theory to the 

light theory, even if we restrict oursevles to physical processes 

with oniy h and Al external lines, there are also two finite 

wave function renormalization constants which appear in the 

decoupling equation, Eq. (1.31, 

r"lA1'n2h = z n1/2 n2/2 

A1 'h r 
*niAlr n2h (V-11 

We need, therefore, at least five independent equations of the 

from (V.l) to extract e*, A* and v*. As it turns out, we shall 

have calculated seven such equations so that there are two 

extra equations to serve as consistency checks. 

As already stated we shall use dimensional regularization 

in n space time dimensions to reyulate our integrals and perform 

minimal subtraction renormalization. Furthermore we shall require that 
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all renormalized parameters have the same dimension, for any n, 

as the corresponding bare parameters have for n=4. Hence we 

introduce a dimensionful scale JJ via the substitution for the 

renormalized coupling constants e 2 -f e2cu2J 2-n/2 and A + A(u 2 2-n/2 1 

As is well-known in such an approach the combination 1/ (2-n/2) + 

&PI p2 goes together. The0 (1) terms we retain in the following 

are those that are proportional to en vz 2 or .teM p . The constant 

terms, except those from the tree level, will be neglected. 

We now describe the various Green's functions we have calculated: 

(1) r2h 

We have divided the contributions into two parts, as 

given in Eq. (111.12) and these are summarized in the Appendix. 

It is worthwhile pointing out that Ar 2h and the"tadpole"contributions 

separately have terms proportional to vf. They cancel out in 

the sum to maintain naturally the heavy 

one light particle, irreducible 2-point 

-r2h 
XL 

= v:[ 2(A2- 2) + A -1 Lfl 
5 16s2 

light division. The 

function is given by: 

2 
v1 

- 
12 

- (A + 6e4 + 20 (x2 - ?I21 L enu2 1 
1 161~~ 

+p2 ~l+2e2--+.P.nv2,-4e2---J=2.~nu21 
1611 16s 

+ O(P4) (V.21 

where 
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2 3 
A = 21; + 8A3 2 + 2x '2'3 ;+20-- x3 

)‘l 16 r;- 1 

4 '2'3'4 A3A4 2 
4 3 

I3 A3X4 - _ 4 - 
I1 A1 

-147+4- 

I1 1 A2 
2 2 

l3l4 +2-Z+6e4 
e4A e4X2 

- 12 3+12- 3 
5 hl A2 1 

For the reduced theory, we have 

*2h = 2h*v*2 - *2 (20A*2 "4 -r " +6e ) ~&I 112 
161r' 

+ p2 (l-2eX2 --&- 1~ u2) +o (p4) 
16a2 

(V.3) 

We note that in Eq. (V.2) the coefficients of the Ln u 2 

terms are not exactly the negative of those of the Ln vt terms. 

This is partly because some of the divergences come from diagrams 

with light lines only. Also, because of the trilinear coupling 

'L vlh2H, we have an integral like 

1 1 -- 
k"+< k"+G 

This gives a term * -in 2 2 v, Ln n$ unaccompanied by 1/(2-n/2) I 
2 or en u . Note that there is another parameter in the model with mass 

dimension,namely vi, and there are always en vz terms which can occur 

to ensure we only consider the logarithms of dimensionless quantities. 

For simplicity we have suppressed these Ien vg terms. 
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It is also quite noticeable that the mismatch in coefficients 

for Pn v", and In u 2 in Eq. (V.2) is equal to the corresponding 

coefficient of .& p2 in Eq. (V.4). This proves to be a 

general phenomenon in all the Green's functions. The significance 

of this observation will be discussed in the next section. 

(2) r2A1 

Here, the heavy mass effects cancel out completely in the 

mass shift calculated in the full theory as would be expected 

from gauge invariance. We have 

-r zA1 = .2"2 
2 - 4e4v2 ~ln u2 

2 16~~ 

+p2 (1+3e2A 
161~~ 

-A Ln p2) 
161r' 

+ S(p4) 

and 
*2A 

-r 1 = e*2"*2 _ 4e*4"*2 1en p2 
16n2 

+ p2 (1 + 5 e*2 1 
16n2 

Lfi P21 

+ 0 (P4) 

(3) r 
2Al,h 

(Pi'01 

(V-6) 

(V.7) 

AS in r 
2A1 

, here all graphs with heavy line(s) contribute 

in -the combination Ln v 2 
1 - En p2. This implies that all the 

en vi are ultraviolet in origin. The results are 
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-r 
2Al,h 

(pi=o) = 2e2 v2 - 2e4v2 -A-. 
16n2 

k?n v", 

and 

- 4e4 v2 --$-1n p2 (V. 8) 
1671 

*2A 
-r llh (pi=O) = 2 e*2v*-6e*4v* ---L+n p2 (V.9) 

161~ 

(4) r3h (Pi'O) 

we encounter here an integral of the kind given in Eq. (I.l), 

with m + mh and M -+ . %- In words, some of the .Cn v",' s originates 

from the infrared region of integration. Again, without much 

further ado, we write down the results 
2 

-r3h(pi=O) 2 = 6(A2 - 
q' 
I3 v2 ( 

I2 3,;6 
2 2 1 

e (X2-X3/A1)) v2 16*2 Ln v1 

x2 
- 3[A+20 (X2 - $)2 + 

1 
6e4-4e2(h2- $)I. 

1 

1 * V?--- 
- 167r2 

.J?nu2 

whereas 

-T *3h cpi=,,) = ,jA*v*-3(20X*2+6e*4-2Af,*2) 

1 . v*- 
1611~ 

Qnu2 

(5) r4h (Pi’O) 

Bes ides the integral of the type of Eq. 

and M -f mB we have a new one of the form 

mf: 1 d4k (k2:g12 '2 2 g iT2 en vf 
(k2+mB) 

(V.10) 

(V.11) 

(1.1) with m + mh 

(V.12) 
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which again gives a Ln v", from the infrared region. All told, 

the results are 

-r4h(pi=o) = 6(A2 
x2 A2 

- $) + 3(A-4e2(X2 - $)I 
1 1 

--L Len v: 
1611~ 

A2 x2 
- 3 [A+20(X2 - gJ2 + 6e4 - 8e2(A2 - $11 

1 1 

(V.13) 

and 

-i- *4h (pi=O) =-6X*-3(20h*2 + 6e *4 - 4e *2h*) 

. 1 Ln !J2 
161~~ 

07.14) 
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VI. One Loop Results - 

To extract the effective parameters from 'be calculations 

in the last section, we 
* * * 

e = e tree +6e = 

* * 
V = Vtree + 6x7* = 

x* = Airee + 6X * = 
g2 = 1 + 
A1 

6L 
A1 

and 

??I2 = 1 + 
h 

6L h 

first write 
* 

e f 6e 

f 6v* 
v2 .2 

(VI-l) 

(YT.2) 

(VI.31 

(VI.4) 

(VI.5) 

in which all the 6-quantities are from one loop. 

NOW we use Eq. (v.l) to relate r's to r*‘S. Thus, from 

r2h , we obtain 

6Lh = e2 -Jz- 
161~~ 

and 

2 (6x*) v; + 4 (x,+x,) v2 (sv*) + 4 02-+y (6Lh) 

=V 2-c.- 

2 16~~ 
en(v2/U2) 1 

As for r 2A , it yields 

6LA = 3 e2 -ii.- en (v2/U2) 
1 2 161r' 1' 

and 

2(& ) e2v2 + 2 e(6e*) vz +2e 
2 

A1 
2 

v2(6v*) = 0 

(VI.6) 

(VI.71 

(~1.8) 

(VI.91 
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r 
2Alh 

gives 

-4 e(6e*)v2 - 2e2 C&v*) - (&Lh + 26L 
A1 

) 2e2v2 

= 2e4v2 .+ ln (v;/v2) 
16~ 

(VI.10) 

r4'(pi=O)r respectively result in 

+ (6x*)v2 + (h2-X&) (6v*) 

= + (A-2e2(h2-~@l)) 1 
16~~ 

Ln (v2/u2) 1 
(VI.11) 

and 

4(6Lh) (X2-h& + 6x* 

= $ (A-4e2 

(VI.12) 

The consistent set of solutions to Eqs. (VI6-11) is 

---$ en (vT/U2) 
16s 

(VI.131 

6V* = 2e2 v2 -.J- en (vt/P2) 
161~~ 

(VI.14) 

6x* = ($ A-6e2 (h2-h!$hl)) + &I (v1/!J2) 

6L =.ze21 2 216n 

Al 2 16n2 
Len CVl/lJ ) 

and 

6% = e2 

(VI.151 

(VI.161 

(VI.17) 
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There are several remarks we should make at this juncture: 

(1) As we said earlier, there are seven equations to solve, which 

consistently yield the same values for the five effective 

parameters. This is an explicit partial verification of the 

decoupling theorem. The general proof was outlirzd in Section IV 

and will be elaborated on elsewhere. 

(2) cYv* is proportional to v2, which is a confirmation to this 

loop order that there is a natural separation of the lights 

from the heavies in a mass hierarchy. The violation is only 

logarithmic. 

(3) There is one feature which stands out in the effective 

parameters: only the combination Ln(v:/u2) occurs. Algebraically, 

this comes about because of our previous observation that whatever 

the difference in coefficients is between 1n v", 2 and - L?n u in 

r, it is equal to the coefficient of - Ln u2 
* 

in r . 

From purely dimensional ground, this matching need not be 
2. the case at all, because there is another scale v2 in the theory. 

If 1n(vi/u2) were an active variable inthe effective 

parameters, the coefficient of Ln vi in general would not have 
2 matched that of - en u . There is of course a profound reason 

why only Pn (vt/v2) appears. First of all, it helps to be 

reminded that the minimal subtraction procedure never introduces 

any extraneous infrared singularity into a thoery. The result 

here is merely a statement that the infrared behavior of the full 

theory is the same as that of the light theory as determined by 
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the operator structure. We expect this remarkable result to be 

true to all orders in perturbation expansion. 
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VII. Renormalization Group Equations -.-- 

Various proposals have been made in the literature to 

sum up the large tn(v:/u2) powers to relate parameters, such 

as masses and couplings at the unification scale to those at 

low energy region, where experiments are presently performed. 

For example, it was argued that when the external energy is 

increased to the unification scale, then the low energy 

effective couplings, up to some trivial Clebsch-Gordon 

coefficients, will merge into one. In such attempts, the 

running of the cou'pling constants was governed by the content 

of the light theory. This has its potential problems, as 

fully appreciated by workers in this area. When the external 

energy is raised, one will start producing superheavy 

objects. How to use an effective field theory to join in 

smoothly with the full theory is a subject of repeated 

discussion. Thus, some authors have devised methods to cross 

thresholds, while others have imposed high energy boundary 

conditions to circumvent discontinuous matching.3,8 

Our approach to tackle this problem is different. We 

have shown that there is a decoupling theorem which in fact 

defines the low energy effective theory. All theln (v;/!J~) 

powers are just effects of radiative corrections due to heavy 

particles on low energy physical processes. In fact, it 

makes no sense for us to use the effective theory to study 

processes with external energy momentum comparable to the 

unification scale, because our approximation to arrive at the 

light theory restricts us to low energy. To put it 



abstractly, if we want to approach the unification scale, 

operators of higher dimensions than those we have included in 

the effective Lagrangian are just as important. 

Let us then concentrate on low energy physics and work 

out a method to relate these two sets of parameters. We 

shall derive a set of renormalization group equations, which 
2 2 

govern the dependence of the effective parameters on .& vl/~, 

as well as other parameters of the full theory. The 

solution of these equations will be carried out in the spirit 

of a leading logarithmic sum. 

For ease of notation, let us use g to denote the generic 

coupling constant and Tn to denote the generic one light 

particle irreducible Green's function with n light legs in 

the full theory. We have the familiar renormalization group 

equation 

(II ;; 
a a a a 

+ B -- + y _----- + y _---- 
w "1 a .b v1 "2 

------ + ya a Ln a - n-f) 
ah v 2 

. rn = 0 (VII.11 

in which the bare parameters are fixed in carrying Out 

differentiations. The various anomalous dimension 

coeffi,cients are defined as usual 

f3=+ (VII.2) 

(VII.3) d 
Y = u 
"1 ai Jh " 1 



d 
Y = ll -- &I " (VII.4) 
v 2 d!J 2 

d 
Ya = LJ -- .!Zn a 

du 
(VII.5) 

and 

2Y = u in (en Zjfull (VII.6) 

There is also the renormalization group equation for the 

one particle irreducible Green's functions in the light 

theory 

(u ;; + fi* -2; + y* --a-- + y* a *n ------ =o 
ag V* a .fh V* a* a Ln a* 

-n y*)I 

(VII.7) 

in which bare parameters of the light theory are held fixed. 

We define 
d 

B* = II -& g" (VII.8) 

d 
y** = II -- & v* (VII.9) 
" du 

y** 
d 

= 11 -- Len a* 
a dv (VII.10) 

and 

2y* = 
d 

LJ au 
Len 2" (VII.11) 

Because of decoupling, we must demand that upon 

substituting l?q. (1.3) into Eq. (VII.l), the resulting 

equation for T* is identical to Eq. (VII.7). For this to be 
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so, we have the following relations: 

(lJ j, a 
t 5 -- t y 

g ag 

--a- + y 
v1 a .tnvl 

2.- + y 
v2 a Lizv2 

a ;.;-,)g*q* 

(VII.12) 

(!J ;; + Bg -.. 
a 

+ Y ------ + Y 
v1 a .Cn vl 

---a-- .+ y 
a 

_---- 
v2 aIn v2 u a.fk ci 

1 

..!?nv* = y* 
* (VII.131 

V 

(11 ;, + 5g ai + y ---a.- + .( 
a a 

_---_- * y ----- 
aLfi ~1 v2 ah v2 

1 
"1 a ah a 

. Len a* = -f* 
a* (VII.14) 

and 

(LJ ;; + 5g ;, + y --a.- .f. 
ah v1 

y -.a- + y 
v2 aemv2 

a ) ----- 
v1 a a&a 

* en2 = 2(y-y*) (VII.15) 

Note that 2 in the last equation is the finite wave function 

renormalizati.on which must be performed to carry the full 

theory over to the light theory. Eqs. (VII.12-15) are just 

chain differention relations, They nevertheless impose very 

stringent conditions on hew the effective parameters can 

depend on en v:/~2. AS they stand, however, they are not at 

all useful, because both sides of the equations have large 

.& vL/~2 dependence and any integration is only pro forma. 
1 

We rcaJst rely on perturbation theory to solve them. 
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Let us see ho.q a leading logarithm sum is performed. As 

an example, we write the effective gauge charge 

* 
e = e f(e2 !nvl/u) (VII.161 

in which e is regarded as a small quantity, but e2Ln vi/p is 

taken to be of order unity. It should be noted that we have 

used the suggestive result of Section VI which states that 

the effective parameters have no .& v2/p2 dependence. 
2 

Furthermore, it has been verified that e* has no gauge 

parameter a dependence in the leading logarithm 

approximation. Equating terms of the same order in e, we 

find that the leading logarithm sum satisfies the equation 

(U %; + Re ii) e* = 5*, 
e 

(VII.171 

in which 4, and B*, need to be calculated only to the lowest 
e 

non-trivial order, i.e. 

20 e3 
6 e= - -- ---- 

3 l6n2 

B** = 
1 e*3 _ ---- 

e 3 l6n2 

We rewrite (VII.17) as 

(i; - Be S,) 2;: = 1 

where 

K : .&(vl/lJ) 

(VII.18) 

(VII.19) 

(VII.201 

(VII.211 
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The solution of this linear equation(VII.20) can be arrived 

at if we expand f(e2K) of Eq. (VII.16) in an infinite series 

of its agrument and substitute into Eq. (VII.20) to obtain 

recurrence relations of the coefficients. However, a more 

elegant and customary way to solve it is to introduce a 

running coupling constant Z, which satisfies the equation 

d - 
;lT 

e (VII.221 

with the solution 

-&2 = e2/(l + $" 2;; +) (VII.23) 

We wish to emphasize the point that this intermediary 

coupling constant 'runs' according to the content of the 

full theory. 

NOW, the standard method yields 

24n2 24x2 ---- = ---- + K 
e*2 59 

e*2 = e2 _-_-___---_-- 

1 + 14 -?- K 
l6rr2 

(VII.24) 

(VII.25) 

13 
This solution is consistent with Eq. (VI.13) , which is the 

one loop result. 
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We can generalize th'is method to perform the next to 

leading logarithm sum as well. In general, the mass insertion 
a a 

term y _--__-- and the gauge term ya ------ cannot be 
via enVl a Kna 

neglected. We are looking into more realistic models to 

carry out this exercise, however. 

Before we go on to the next section, we want to 

reiterate that our renormalization group equations are 

formulated entirely with respect to physics in the lcw energy 

sector. Information of the full theory is fed into these 

equations through the B's and the y's, while that of the 

light theory is given via the 8*'s and the y*'s. To us, this 

is the cleanest and most unambiguous way to interrelate 

parameters of the two theories. 
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VII. Concluding Remarks --~ --- 

In this article and a sequel, we have taken a gauge 

model with o(3) symmetry and analyzed the problem of the 

gauge hierarchy and decoupling. We have shown to all orders 

that the separation of particles into light and heavy sectors 

as in the grand unification scheme is stable in a 

perturbation expansion; the heavy mass effects give only 

logarithmic correction to the light effective masses. Also, we 

have shadn that if we confine ourselves to low energy light 

particle processes only, there exists an effective Lagrangian 

with light fields alone that can be used to reproduce all the 

one light particle irreducible Green's functions to an 

accuracy of O(1). All the heavy particle effects again 

appear only as logarithmic corrections and can be absorbed by 

finite wave function, mass and coupling renormalizations. In 

the specific model, the limiting effective Lagrangian is the 

O(2) Higgs model. Last but not the least, we have proposed a 

set of renormalization group equations to systematically sum 

2 
the large en @l/~2)terms. Here, our approach is to stay 

in the lo*r energy region to perform this task to avoid the 

imposition of extra boundary conditions. 

We have explicitly verified all we have said at the one 

loop level. 

It is expected that the method and approach advocated 

here to be independent of the symmetry group, A model was 

chosen mainly to make our discussion concrete. We are 

extending this program to other cases where the symmetry 
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group better accommodates nature, such as SU(5). 
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APPENDIX 

In this appendix we display diagram by diagram the one 

loop, leading order contributions to r 
2h 2Al 

, T , r 
2A1,h 3h 

I r 
4h 

and r , By considering the diagrams that consist of only 
*211 

light fields, one can also easily extract r , r 
*2Al 

, 
*2A *4h 

r 
+, r*3h and r . For notational simplicity in the 

following tables we have defined 
2 

1 -- (A.1) 
E' 

1 1 -- z v--e 
II [I t bl $1 

c l6n2 a 
(A.21 

where 

E E 2-n/2 (A.3) 

with n being the dimension of space-time. To obtain the 

results given in Section V from the tables we have employed 

minimal subtraction renormalization. 

The "tadpole" contributions given in the figures and 

tables are determined from Eqs. (111.6, 10 and 11) and just 

contribute to the h, H and h-R propagators. In 

particular the "tadpole" contributions to the h-line, H line 

and h-B line (p 
hh' 'BH 

and p 
hH 

respectively) are given by 

1 1 'hh = Rl(;- cos 0 sin26 - v -- sin 0 cos20) 

1 2 

t R (:- sin38 1 
2 ” 

t -- cos38) 
” 

1 2 

(A.41 
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P 
HH 

= R (A- cos3e -I 1- si.30) 
1" " 

1 2 

t R2 (i- cos2esine t i- sin2e case) 

1 2 

1 
P = 
hH 

sine cose[Rl(;- case t -- "1 sine) 

1 2 

(A.5) 

(A.6) 

t R2(;- 
1 

sine - -- case)] 
" 

1 2 

where R and R ace the radiative corrections to the H and h 
1 2 

tadpoles and 0 is given by Eq. 11.22. In the tables the 

"tadpole" contributions are indicated by an x where the 

letter above it indicates the particle in the tadpole loop. 
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.TABLE CAPTIONS 

Table I. Contributions to r 
2h 

corresponding to the diagrams in 

Figure 4. 

Table II. Contributions to r 2A1 corresponding to the diagrams in 

Figure 5. 

Table III. Contributions to r 2Al,h corresponding to the diagrams in 

Table IV. 

Table V. 

Figure 6. A multiplicative factor of v2 is suppressed 

for each entry. 

Contributions to r 
3h 

corresponding to the diagrams 

in Figure 7. A multiplicative factor of v2 is suppressed 

for each entry. 

Contributions to r 
4h 

corresponding to the diagrams in 

Figure 8. 



FIGURE CAPTIONS 

4h 
Diagrams that contribute to r in the tree 

approximation. The dashed lines represent h-lines 

while the solid lines represent II-lines. 

An example of the algebraic rearrangement. The dashed 

lines represent the light (mass m) lines while the 

solid line represents the heavy (mass M) line. Diagram 

(ii) indicates parts 1 and 2. 

Diagrams that result after the algebraic rearrangement. 

The blob indicates the effective light theory vertex. 
2h 

Diagrams that contribute to r . The external lines 

are h-lines. Diagram (iii) represents the tadpole 

contributions. 

Diagrams that contribute to T 2A1 . The external lines 

are A lines. 
1 

Diagrams that contribute to T +,h . The wavy external 

lines are A -lines while the dashed external line is 

Figure 1. 

Figure 2. 

Figure 3. 

Figure 4. 

Figure 5. 

Figure 6. 

Figure 7. 

Figure 8. 

. I 
an h-line. 

3h 
Diagrams that contribute to r . All the external 

lines are h-lines. In diagram (v) the x represents the 

tadpole contributions. 
4h 

Diagrams that contribute to r . The external lines 

are h-lines. In diagram (viii) the x represents the 

tadpole contributions. 



TABLE I 

Diagram a 2h 
B Contribution to r 

Wpe 

(i) H 

rl 

H 

rl 
1 -- v2[2i~+2\~+2~~a,,~+2~~,~~+4~ x 
E' 2 2 4 

-4~2~3hq/~l-4h2~:/~1-4~ x2,x 
34 1 

-4x2x /h 
34 1 

+4h;~4/y 

h 

$3 

h 

5 

A 
1 

A 
2 

A 
3 

C 
1 

C 
2 

C 
3 

A 
1 

h 

+ 
.3 

l-l 

17 

A 
1 

A 
2 

A 
3 

C 
1 

C 
2 

C 
3 

@3 

12 
-- v 
EN 2 

[Be4 1 

12 
-- v 
E' 2 

[8e4A:/kt] 

12 
-- v 
E' 2 

[8e4-1613e4/k1+81:e4/h:] 

12 
-- v 
E" 2 i-e4 1 
12 
-- v 
E' 7. 

[-e4A:/lt] 

12 
-- v 
E’ 2 

[-e4 +213e4/11-~~e4/~~] 

[-2e4]+p2[2e2JI 
1 2 -- Iv 
E" 2 

1 
-, +3( h2-$y2] 
E 
12 
-- v 
c" 2 

[2(~2-$y21 

i- I2[4?] 
E' 

+~~[-32~~,~~+28h~i:/h1+8~~/~~]) 

12 - -- 
II v E 2' 

4~2+1-4+1f] 

1 -- v2[~2]*v~[-41214+213?,~ 22 2 
c' 1 4 l-+3 x4'x.l 

+ 4h;A4/yI 



Table I COn't. 

2h 
Diagram a B Contribution to I- 

TYP‘= 
___________________-________------~--------~---------------- 

A n 
3 

12 
A 5 -- " [-2e4+4e4X /A -2ei12,i2] 

3 E' 2 3 1 3 1 

(ii) 

12 
A R -- " [-2e4X2,X2 1 

2 3 E' 2 3 1 

1' H l-["2~211~3]+"f 
E' 1 

1 

612-10X3,X +612+,]1 
3 3 1 

n ‘-h21X x ] x +x3x ,x2-x x2x ,x2 
E' 124 2 4 34 34 1 234 1 

++~,A~-2~3+,]~ 

5 1-h2 lx El 1 3 e2+h4e2]+":je212+e21~,~,-~2~~,~~ 

-e 2X:~4,~:+2e2~3h4/X1]} 

TI 
3 

h 

$3 

;; t,: 

12 
-- " 
Em 2 

12 
-- " 
E" 2 

X3e2]+” ;1- .2A~,h~+e2A~/A1 ]I 

612(~2-h:/h,) I 

li2e21 
1 
-- " 2[4e4] 
E" 2 

1 
-- " 
E' 

2' 4e4X2,i2 
2 31 

A 
1 

A 
2 

A 
3 

(iii) H 



Table I can't. 

Diagram (I 2h 
B Contribution to r 

Ww 
-__-__ 

1 s-- 
h -- ~~[-6h2+lOi~1:/~~-4h:/iI] 

E" 2 

1 
rl -; Iv:[-a2a4-h~]+v~[-a2-a a +a x2x 

E 4 34 234 
,x2 

1 

113 
12 

$3 -- v 
E" 2 l-e2 x2 I 

A -- 1. 1 v2 E" 2 [-4e4 ] 

A 
2 

A 3 

C 1 

C 
2 

C 
3 

:- c' ivf[-4e4]+vz[-4e4]) 

12 
-- v E" 2 [e41 
12 
-- v 
t' 2 

:- 
E' 



Diagram cx B 
TYPO 

TABLE II 

2A 
Contribution to r 1 

(i) A 
2 

A 
2 

A 
2 

A 
3 

H 

5 

C 
2 

h 

A 
1 

(ii) A 
2 

A 
3 

n 

5 

n 
3 

H 

h 

$3 

1 
A 

3 
,; 1”~: 1-!h4j+“; I- ; e4 j+p2 1;” e2 Jl 

5 ;; qe4J + “; [-3e4JI 

12 
17 -- ” 

E’ 2 
[4e41 

12 
II -- ” 

3 E’ 1 
le4J 

q3 ‘,; VI [-2e2+lJ 

1 
n . 

3 
,; Iv:1-2e4] + “yJ + p2[-e2,3]I 

12 
* -- ” 

3 &’ 2 
[-a4a2-e4] 

C 
3 

;; {“: le4 1 + v: [e4/2 I + p21e2/6 11 

$3 
;; {V2 

2 
[-2e2( a2-+a )-e4j + p2[-e2/311 

1 

12 
h -- v 

E” 2 

12 
-- v 
E’ 1 

[4e4 I 

[3e41 

;;(“f13e4J + $3e4JI 

12 
-- v 
E’ 2 

b4e2 I 

12 
-- v 
E' 1 

le41 

12 
-- ” 
E’ 1 

le41 
12 
-- v 
E’ 2 

[2e2h:/~1 I 

12 
-- v [2(x2-+ k21 
c” 2 1 

12 
-- ” b41 
E” 2 



TABLE III 

Diagram ci 8 Y Contribution to r 
2Al,h 

TYPO 

(i) C 
2 

C 
3 

A 
2 

A 
3 

n 
3 

$3 

II 
3 

5 

TI 
3 

A 
3 

A 
2 

A 
2 

$3 

h 

h 

C 
3 

C 
3 

C 
2 

C 
2 

A 
3 

A 
3 

A 
2 

A 
2 

11 5 

h H 

A 
3 

5 

A 
2 

ll 
3 

A 
3 

Il 

A 
2 

II 
3 

A 
3 

11 

A 
3 

5 

h h 

1c13 

A 
1 

*3 

$3 

i; I- ; e4a3/i, J 

-I; 1 -9e4(1-1 /A ) 
3 1 

-- 1, [ 9e413/$ I 

-- 1, 1 -2e2i4] 

-- :, [ -4$2/h,] 

+4w13/~ ) ] 
1 

i;l a3e4/ a, 1 

‘,; le41 

i;[- f e4a3/i1 1 

i;l -3e4] 

a; 1; .4u-13/y 

I- [6(+ -X )e2 
E” 12 

1 
,; [2(X2,X 3 12 -a k2 

-2e4] 



Table III can't. 

2A1 ,h 
Diagram a 6 Y contribution to r 

TYPe 
____________________----------------------- -_-__---- ------- 

(ii) ll 

H 

A 
3 

A 
2 

h 

+3 

(iii) A 
2 

A 
3 

A 
2 

A 
1 

5 1- 1 
E’ 

2e2x4 j 

h J-1 

E’ 
4e2 p, I 

A 1-x /A ,I 
3 

i; [6e4t 3 1 

A l- 1 2 ;; 6e413/+ 

h _ 1, [6( a -x2,x )e21 
E 2 3 1 

1 
*3 -- b2J 

E” 

~2(~2-A2,~ 3 1 

r( ;; \4e4] 

IT l- 1 3 ‘,; 2e413iA1 

5 ;; l- 2e4c 1+x3/y I 

h 



TABLE IV 

Contribution to r 
3h Diacjram a 

Type 

(i) h 

A 
3 

n 

n 

$3 

A 
1 

(ii) H 

h 

” 

n 

A 
2 

A 
3 

C 
2 

C 
3 

h 

6 

h 

A 
3 

" 

5 

A 
1 

$ -3 

H 

H 

n 

5 

A 
2 

A 
3 

C 
2 

C 
3 

h 

Y 

H 

H 

A 
3 

A 
3 

A 
1 

*3 

H 

H 

H 

.&I (v;)[-36 +2-+1)/~1] 

1- [-Ge4 
E' 

+ 6e4 h3/i1 ] 

1--[-6X 
E' 2 

e2-614e2+6A3A4e2/Al+6~~e2/Al] 

L [ 
E' 

6e214-6e2A3i4/1J 

1- [ 
E" 

-6e4 ] 

L [ 
E" 

-6e2( A2-i:/il) ] 

A- [ 
E’ 

36X (A 3 3-+1) I 

L [ 
E' 

24 +l-24+f] 

1--[-612~~:/~1-6~2~314,~1-6~:~4/11 
E' 

-6~3~24,11+12i:~4/~12+6~~~~,h:-~6h~,~:] 

I-[-6h3hq+6h~h4/il+313*:/hl-3~~~~/~~] 
E' 

:- [24e4At/It] 
E' 

;; 1 -24e4A3/A1+24e4?,:/At] 

i; l- 3e4 i:/h: ] 

t; 1 3e4 A3/A1-3e4 AZ/if ] 

1- [- 
E" 

+2-+1)/~1] 

$3 @3 
H 



Table IV can't. 
3h 

Diagram U 6 Y Contribution to i- 

TYPO 

(iii) 

(iv) 

A 
2 

A 
3 

A 
3 

H 

h 

n 

A 
3 

*3 

A 
1 

h 

ll 
3 

Tl 

5 

H 

h 

n 

A 
3 

+3 

A 
1 

H 

5 

H 

H 

5 H 

II H 
3 

H 

Ii 

',; 16X2( ~2-h:/$) 1 

’ -- 1 24e41 
En' 

6X X -6X 1 +6X 

-3X3X24,$ 1 

I-[3XZe2,X -3X3e2,X2 
c' 3 1 3 ,l 34 1 

+ 3X3X4e2/h,] 



Table IV can't. 

Diagram a 0 
3h 

Y Contribution to r 
TYPO 

(V) 

A 
2 

H 

n 

5 

B 
3 

A 
2 

C 
2 

H -- 1, [-1f3A~ + 12h4,i2+6h3,A ] 
31 31 

H ,; 13~21fi4,12-3~:h4,12] 
1 1 

H 

H 

-- 1, 1 3e2X3,X2-3e2X2,X ] 
3 1 3 1 

-- :, I- 31:e2,~1+3h:e2,h2 
1 
J 

ii 

H ;; [3e4+:] 



TABLE V 
4h 

Diarjram a % Y 6 Contribution to IJ 
TY I= 

(i) H 
? 

$3 
(ii) A 

3 

q 
rl 
A 

1 

H 

(iii) H 

II 

H 

H 

H 

H 

H 

H 

H 

H 

h 

A 
3 

A 
1 

n 

A 
3 

5 

$3 

h 

H 

Il 

n3 

A 
2 

A 
3 

C 
2 

C 
3 

h 

$3 

A 
2 

H h 

$3 A3 

$3 A1 

n H 

A H 
3 

A H 
3 

$3 H 

h H 

H H 

11 H 

113 
H 

A H 
2 

A H 
3 

C H 
2 

C H 
3 

h H 

$3 H 

ll H 
3 

ancv:) l+241:/~: 1 

5; [6e4 ] 

f; [se41 

‘-[12e2a:/a1+ 12A3y29 
E’ 

L [ 
e’ 

12e4 a/a1 ] 

L[- 
E’ 

12A314e2,A1] 

I- [ 
E” 

1*a:e2,al] 

&) [24+;] 

1_- [ 
c’ 

549 

1 
;; [6~~/~~+12~~~4,~:+6~~~~,~~] 

:- [6?] 
E’ 

L [ 
E’ 

24e4 1:/i; ] 

L. [ 
E’ 

24e4 AC/A: ] 

‘;; [ -31;e4,?] 

1- [- 
E’ 

3 +4,i; ] 

f; [ 6 +:I 

i- [+a;] 
En 

6e4X2/i2] 
31 



Table V can't. 
4h 

Diagram (1 5 Y 6 Contribution to r 
TYP 

- 

H 1- [- 
&' 

6e4 ?/a; ] 

(iv) H h h 

(v) 

(vi) 

(vii) 

H 

H 

A 
3 

5 

n A 
3 

A 
3 

rl 

A 
1 

$3 

h 
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Figure 8 


